Model for Spatiotemporal Crime Prediction with Improved Deep Learning

نویسندگان

چکیده

Crime is hard to anticipate since it occurs at random and can occur anywhere any moment, making a difficult issue for society address. By analyzing comparing eight known prediction models: Naive Bayes, Stacking, Random Forest, Lazy:IBK, Bagging, Support Vector Machine, Convolutional Neural Network, Locally Weighted Learning – this study proposed an improved deep learning crime model using convolutional neural networks the xgboost algorithm predict crime. The major goal of research provide based on previous criminal records. Using Boston dataset, where our larceny dataset was extracted, exploratory data analysis (EDA) used uncover patterns explain trends in crimes. performance basis accuracy, recall, f-measure 100% outperforming other models study. aid security services better use their resources, anticipating certain time, serving better.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Deep Learning for Real Time Crime Forecasting

Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatiotemporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both...

متن کامل

Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps

Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset [15].We propose a new architecture for the GQ-CNN and describe practical improvements that increase...

متن کامل

Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model

Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent   aim of the research is t...

متن کامل

Deep Learning a Quadrotor Dynamic Model for Multi-Step Prediction

In this work, we develop and assess models for a real quadrotor in a Multi-Step prediction problem, that is, predicting the system state over many future steps using only the input. We propose a hybrid model with two configurations by combining deep recurrent neural networks with a quadrotor motion model. The proposed models take only motor speeds as input and predict the system state over a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computing and informatics

سال: 2023

ISSN: ['1335-9150', '2585-8807']

DOI: https://doi.org/10.31577/cai_2023_3_568